

Широкополосная Технология Беспроводного Доступа WiMAX - IEEE 802.16

Wireless Competence Network Center (WCNC) 2005

Содержание

- 1. Современные сети беспроводной связи
- 2. Цели и назначение технологии беспроводного доступа WiMAX
- 3. История развития стандарта IEEE 802.16 WiMAX
- 4. Стек протоколов определенных стандартом IEEE 802.16
- 5. Обзор уровня доступа к среде Medium Access Control (MAC)
 - Адресация и соединения
 - Форматы MAC PDU
 - Базовые служебные сообщения МАС уровня
 - Составление и передача MAC PDUs
 - Сервисы и механизмы опроса, обеспечивающие поддержку QoS
 - Запрос и распределение полосы
 - Механизм входа в сеть
 - Процедура Ranging
 - Механизм перехода к другой базовой станции (Handover)
- 6. Физические уровни (PHY layers) стандарта IEEE 802.16-2004
- 7. Физический уровень WirelessMAN-SC
- 8. Физический уровень WirelessMAN-SCa
- 9. Физический уровень WirelessMAN-OFDM
- 10. Физический уровень WirelessMAN-OFDMA
- 11. Основные отличия уровня WirelessMAN-OFDMA IEEE-802.16e

1. Современные Сети Беспроводной Связи

Типы сетей, основанных на беспроводных технологиях	Характерный радиус действия (м)	Технологии/ IEEE стандарты	Пропускная способность (Мбит/с)
WPAN (Wireless Personal Area Network) – персональная беспроводная сеть	до 10 м	Bluetooth (IEEE 802.15.1a) UWB (IEEE 802.15.3a)	1-400 Mbps
WLAN (Wireless Local Area Network) – локальная беспроводная сеть	50–100 м	WiFi (CCK/OFDM) IEEE 802.11a,b,g,n	11Mbps, 54Mbps, 135Mbps@20MHz 250Mbps@40MHz
WMAN (Wireless Metropolitan Area Network) – городская беспроводная сеть	1500–5000 м	WiMAX IEEE 802.16-2004 IEEE 802.16e	SC: 134Mbps@28MHz OFDM(A): 75 Mbps@20 MHz
WWAN (Wireless Wide Area Network) – глобальная беспроводная сеть	>1000 м	3GPP, EDGE(GSM), GPRS, CDMA2000 WCDMA, HSDPA, IEEE 802.20	10 Kbps-10Mbps

2. Цели и Назначение Технологии WiMAX

Worldwide Interoperability for Microwave Access (WiMAX) – торговая марка технологии широкополосного беспроводного доступа, основанной на семействе открытых стандартов IEEE 802.16

Технология WiMAX призвана обеспечить:

- предоставление высокоскоростного и повсеместного доступа в сеть Интернет (за пределами офиса или дома)
- повышение скорости передачи данных современных мобильных систем, делая доступными новые сервисы и услуги в беспроводных сетях связи
- мобильной связью городские и сельские области (там, где проводные решения недоступны и/или слишком дороги)
- дополнение популярных WLANs сетей Wi-Fi, функционирующих внутри зданий (офисах, домах)

3. История Развития Стандарта IEEE 802.16 (WiMAX)

IEEE 802.16e

Одобрен: ????, 2005

IEEE 802.16-2004

Одобрен: Январь, 2004

IEEE 802.16a

Одобрен: Январь, 2003 (Дополнение к стандарту IEEE 802.16-2001)

IEEE 802.16 - 2001

Одобрен: Декабрь, 2001

- Дополнение к стандарту IEEE 802.16-2004, обеспечивает возможность работы как **мобильных**, так и неподвижных пользователей
- Введена концепция масштабируемости поддержка различного числа поднесущих (OFDMA 2048, 1024, 512, 128).
- На MAC уровне введена поддержка Security, Power, Hand-off support
- Улучшены режимы адаптивных антенных систем и МІМО-схем передачи
- Новая ревизия стандарта 802.16 является обобщением двух предыдущих версий (вводит пояснения, устраняет неоднозначные трактовки, и добавляет новые режимы (PHY&MAC), улучшающие характеристики системы в целом)
- Основное применение немобильные беспроводные системы связи
- Заложены основы для физического уровня стандарта 802.16е
- Введена поддержка адаптивных антенных систем и МІМО-схем передачи
- Дополнение к IEEE 802.16-2001 позволяющее работать в условиях отсутствия прямой видимости в диапазоне 2-11ГГц (в многолучевом канале связи с замираниями)
- Добавлено 2 физических уровня, основанных на технологии OFDM-256 и OFDMA-2048
- Обновлен и структурирован МАС для поддержки нескольких физических уровней
- Гибкое распределение спектра, кратное минимальному диапазону 1.5-24 или 1.75-28МГц
- макс. темп передачи 72 Мбит/с, OFDM @ 28 МГц
- Первый стандарт IEEE 802.16-2001 оперировал в диапазоне частот от 10–66 ГГц и был разработан для систем работающих в условиях прямой видимости
- Физический уровень основан на модуляции одной несущей (Single Carrier)
- Поддержка режима TDD/FDD
- Полосы частот 20, 25 или 28 МГц (с макс. скоростью 134.4 Мбит/с для 64 QAM и 28 МГц)

4. Стек протоколов определенных стандартом IEEE 802.16(e)

доступом к среде (МАС) Уровень управления

Набор физических уровней (РНҮ)

Подуровень согласования (Convergence Sublayer)

IΡ

ATM

Ethernet

Классификация пакетов

Подавление заголовков

Общий подуровень (Common Part Sublayer)

Вход в сеть

H-ARQ

Генерация пакетов

Протоколы

управление

ключами

безопасности/

Разборка пакетов

Распределние пакетов внутри фрейма

Управление соединениями

Переключение между базовыми станциями

Наделение ресурсом

Управление мощностью (Sleep & Idle modes)

Физические уровни IEEE 802.16-2004 и 802.16е

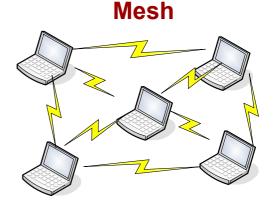
Одночастотная передача -SC: 10-66ГГц (LOS)

SCa: 2-11ГГц (NLOS)

Ортогональное частотное мультепликсирование -OFDM-256 2-11ΓΓ_μ (NLOS)

Ортогональное частотное разделение пользователей OFDMA - 2048, 2-11ГГц

OFDMA - 1024, 512, 128


5. Уровень доступа к среде Medium Access Control (MAC)

• Стандарт определяет две возможных топологии сети:

PMP (Point to MultiPoint) — соединение точка-многоточка является основным режимом работы. Связь между пользователями происходит через точку доступа (базовую станцию BS). Базовая станция контролирует распределение трафика в сети, управляет ресурсами, предоставляет различные сервисы и услуги.

PMP

Меsh (ячейка) – одноранговая сеть без использования выделенных точек доступа. Каждое беспроводное устройство не только принимает и передает свой трафик, но также маршрутизирует и пропускает через себя трафик других устройств, входящих в сеть. Данная топология имеет ряд преимуществ: высокая спектральная эффективность, самморганизующаяся сеть, гибкость, робастность, маленькая излучаемая мощность устройств. Недостатком данной топологии является сложность реализации: алгоритмы маршрутизации, управление ресурсами, большие времена ожидания соединения.

5.1 Режимы работы

• Возможные режимы работы:

TDD(Time Division Duplexing) – Режим временного разделения. Абоненты и базовая станция передают на одной несущей частоте, но в разные промежутки времени

FDD(Frequency Division Duplexing) – Режим частотного разделения. Сигналы абонентов и базовой станции одновременно передаются на разных несущих частотах обеспечивая максимальную пропускную способность в восходящем и нисходящем потоках

H-FDD(Half-Duplex FDD) – промежуточный вариант, когда абонент не может передавать и принимать одновременно

f ₁	Downlink(DL) - передача от базовой станции к абонентам	SS #1	SS#3	SS#2
f ₂	Uplink(UL) - абоненты передают на базовую станцию	SS #1	SS#2	SS#3

5.2 Адресация и соединения

• Адресация

- Станция абонента имеет 48-битный IEEE MAC адрес (в соответствии со стандартом IEEE Std. 802 – 2001)
- Базовая станция имеет 48-битный идентификатор (24 бита из которых содержат информацию об операторе)
- МАС уровень является протоколом с установлением соединения. Соединение однонаправленная логическая связь между МАС уровнем базовой станции и станции абонента. Служит в качестве указателя на адресата и контекст информации
 - Все сервисные потоки передаются через соединение
 - Запрос на передачу осуществляется через соединение
 - Каждое соединение ассоциировано с определенным уровнем QoS
 - Соединения идентифицируются с помощью 16-битного идентификатора CID (connection identifier)
- Несколько соединений может быть построено для множественных сервис потоков
- Протоколы более высокого уровня могут совместно использовать одно и тоже соединение

5.3 MAC PDU форматы

- Каждый блок MAC PDU (Protocol Data Unit) начинается с 6 байтного заголовка
- Область полезной загрузки может иметь разную длину
- Максимальный размер MAC PDU составляет 2048 байт, включая заголовок, область полезной загрузки, контрольную сумму (CRC)

Поля МАС заголовка:

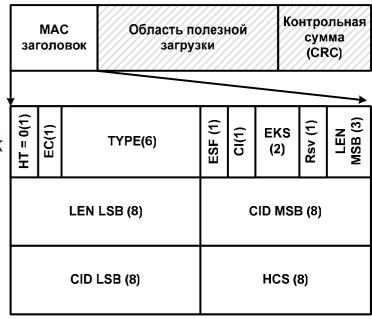
НТ – тип заголовка

ЕС – индикатор шифрования

Туре – указатель на тип сообщения

ESF – указывает на расширенный заголовок

CI – индикатор контрольной суммы


EKS – индекс ключа шифрования

Rsv – зарезервировано

LEN – размер в байтах MAC PDU

CID – идентификатор соединения

HCS – проверочная последовательность заголовка

5.4 Базовые служебные сообщения МАС уровня

- Описание восходящего/нисходящего канала передачи (DCD/UCD)
- **Карта фрейма (DL-MAP, UL-MAP)** задает координаты время/частота пакетов пользователей в подфреймах нисходящего.восходящего каналов
- Ranging (RNG-REQ, RNG-RSP) сообщения для поддержания качества линии связи между пользователем и базовой станцией
- **Регистрация (REG-REQ, REG-RSP)** пользователь получает доступ в сеть и становится управляемым базовой станцией
- Сообщения безопасности и обмена ключами (PKM-REQ, PKM-RSP) переносят специфические данные аутентификации, авторизации и управления ключами
- Динамический сервис (DSA-, DSC-, DSD-) предоставление новых возможностей
- Широковещательные и групповые сообщения (MCA-REQ, MCA-RSP) объединение пользователей в группы
- Обмен поддерживаемыми опциями (SBC-REQ,SBC-RSP) поддержка кодовых схем BTC, CTC, антенных технологий AAS, STC, MIMO, перестановок OPUSC, OFUSC, AMC
- Поддержка физического уровня (FPC, TPC, ARQ-Feedback ARQ-Discard, REP-REQ) ARQ, изменение модуляции/кода пакета, управление мощностью, измерение канала
- Поддержка мобильности (MOB_SLP-REQ, MOB_MSSHO-REQ, MOB_SCN-REQ) режимы спящий, холостой, сканирование, передача пользователя другой базовой станции
- **Cброс (RES-CMD)** команда перезагрузки, инициализации МАС уровня и повторения процедуры начального доступа в сеть

5.5 Составление и передача MAC PDUs

- Конкатенация MAC PDU
 - объединение нескольких MAC PDUs в один пакет передачи
 - каждый MAC PDU имеет свой идентификатор соединения
- Фрагментация MAC SDU
 - разбиение MAC SDU на фрагменты передаваемые в различных MAC PDUs
- Упаковка MAC SDUs
 - процесс объединения нескольких MAC SDU
 - MAC SDU могут быть как одинаковой фиксированной длины так и различной длины
- Все три процесса позволяют эффективно использовать и распределять имеющийся ресурс полосу передачи

5.6 Сервисы и механизмы опроса, обеспечивающие поддержку QoS

- Поддерживается 4 вида сервиса, каждый из которых приспособлен для определенного типа потока данных:
 - Unsolicited Grant Service (UGS) предназначен для поддержки потоков реального времени, генерирующих пакеты данных фиксированного размера, таких, как передача потоков Е1 и голоса поверх IP (VoIP) без подавления пауз
 - Real-Time Polling Service (rtPS) сервис запросов реального времени. Предназначен для поддержки потоков реального времени, формирующих пакеты данных переменной длины, таких, как MPEG видео
 - Non-Real-Time Polling Service (nrtPS) сервис запросов не требующий реального времени. Обеспечивает транспортировку потоков с использованием пакетов переменной длины (например, при широкополосной передаче средствами FTP), менее чувствителен к задержкам передачи
 - Best Effort (BE) service наилучшего возможного. Предназначен для эффективного обслуживания трафика. Предоставляет минимальный уровень сервиса, пакеты обрабатывается сразу как только появляется возможность

5.7 Запрос и распределение полосы

- Пользователь при необходимости может запросить полосу для соединения с базовой станцией. Стандарт определяет несколько механизмов запросов полосы:
 - Requests (запрос полосы) пользователь запрашивает у базовой станции выделить необходимую полосу для передачи данных (число байт)
 - Grants (предоставление полосы)
 - Polling (опрос) Процесс, с помощью которого базовая станция резервирует пользователю место для запроса полосы. Данное выделение ресурсов может быть, как конкретному пользователю, так и группе пользователей
 - Contention based (конкурирующий запрос) Пользователи используют специально выделенный интервал фрейма (частота/время) для посылки запроса на предоставление полосы. С этой целью используется специальный CDMA код

5.8 Механизм входа в сеть

5.9 Процедура Ranging

- Базовая станция указывает указывает пользователю о необходимости подстройки параметров физического уровня:
 - Смещения частоты
 - Подстройка времени передачи
 - Регулировка мощности
 - Распределение полосы

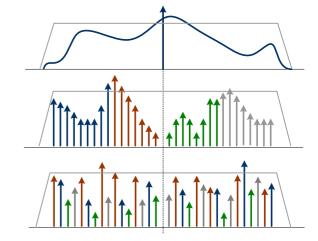
Типы:

- Первоначальный ranging/ Handoff ranging Точная оценка и подстройка параметров передачи при входе в сеть / выбор базовой станции с наиболее сильным уровнем сигнала
- Периодический ranging Улучшение оценки и своевременная подстройка физических параметров передачи
- Запрос полосы быстрый доступ к ресурсам полосы

5.10 Механизм перехода к другой базовой станции (Handover)

- Процесс перехода пользователя от обслуживающей базовой станции (БС) к соседней может быть использован в различных целях:
 - Обеспечение лучших условий приема сигнала (выезд из зоны покрытия, замирания сигнала, уровень интерференции)
 - Пользователь может быть обслужен с большим уровнем сервиса у другой базовой станции
- Выбор соты: БС может выделить пользователю скан-интервалы с целью поиска соседних БС для оценки возможного перехода между станциями.
- Решение о смене БС может быть инициировано любой из сторон
- Для перехода пользователя под управление другой БС необходимо совершить действия аналогичные механизму входа в сеть (синхронизоваться, выполнить процедуру ranging, обменяться параметрами). Механизм перехода может быть упрощен, если БС уже договорились о передаче пользователя.
- Пользователь может прервать процедуру перехода
- Процедура передачи пользователя завершается удалением всех соединений, принадлежащих пользователю

6. Обзор Физических Уровней Стандарта IEEE 802.16 – 2004


IEEE 802.16 – 2004 определяет три основных физических уровня: 1) Single Carrier(SC) + SCa 2) OFDM 3) OFDMA, каждый из которых был разработан для максимального

SC – передача широкополосного сигнала(видеоимпульса) на несущей частоте

- Эффективна в условиях прямой видимости и неселективного канала
- временное разделение пользователей TDMA

OFDM:

- Параллельная передача информации по набору ортогональных поднесущих,
- Простота обработки в условиях отсутствия прямой видимости;
- Возможно временное и частотное разделение пользователей

OFDMA:

- Пользователю выделяется определенный набор ортогональных поднесущих (подканал);
- Разделение пользователей возможно как по частотным подканалам так и во времени
- Более эффективное использование спектра и управление пользователями

7. Одночастотная передача (WirelessMAN-SC)

Спецификация физического уровня WirelessMAN-SC разработана для работы в частотном диапазоне 10-66ГГц в условиях прямой видимости. Основное применение — фиксированные точки радиодоступа, расположенные на крышах зданий.

• Поток данных в схеме WirelessMAN-SC приемопередатчика

На приемнике видеосигнал детектируется при помощи эквалайзера с малым числом коэффициентов. Данная подход является эффективным в условиях отсутствия многолучевости

7.1 Одночастотная передача (WirelessMAN-SC)

- Длительность фрейма данных 0.5; 1; 2 мс.
- Длительность символа данных 62.5; 50; 44.6 нс.
- Квадратурная модуляция (QPSK, 16-QAM, 64-QAM)
- Преамбула (тренировочная последовательность сформирована из QPSK символов, используя constant amplitude zero autocorrelation sequence (CAZAC)
- Канальное кодирование (FEC):
 - 1) Код Рида Соломона GF(256)
 - 2) Код Рида Соломона GF(256) + Блочный сверточный код (24,16)
 - 3) Код Рида-Соломона GF(256) + Проверка четности (9,8) (optional)
 - 4) Блочный турбо код (optional)

Пропускная способность							
Полоса частот, МГц							
20	32	64	96				
25	40	80	120				
28	44.8	89.6	134.4				

8. Одночастотная передача (WirelessMAN-SCa)

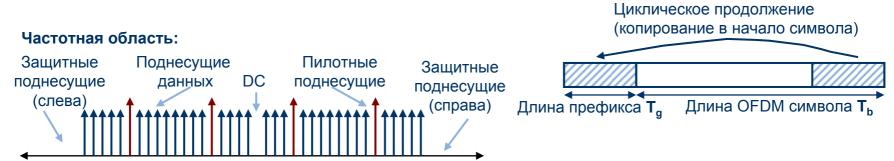
Спецификация физического уровня WirelessMAN-SCa разработана для работы в лицензируемых диапазонах < 11ГГц в условиях отсутствия прямой видимости. Основное применение – фиксированные точки радио-доступа

• Основные характеристики физического уровня:

- Адаптивная модуляция и кодирование для UL & DL
- Изменена структура фрейма, что позволило улучшить характеристики оценки канала и эквалайзера в условиях отсутствия прямой видимости и сильной многолучевости канала
- Введена схема разнесения на передаче (сигнал передается с 2-х антенн) (optional)
- Введена поддержка (РНУ & MAC) для адаптивных антенных систем (optional)

9. Ортогональное Частотное Разделение (WirelessMAN-OFDM)

Спецификация физического уровня WirelessMAN-OFDM основана на OFDM модуляции и предназначена для работы в условиях отсутствия прямой видимости в диапазоне частот < 11 ГГц


- Переход на OFDM технологию обусловлен несколькими факторами:
 - Простота обработки (демодуляции) сигнала в условиях сильного многолучевого распространения (используя быстрое преобразование Фурье FFT/IFFT)
 - Устойчивая работа системы в частотно селективном канале связи
 - Робастность системы в присутствии узкополосной интерференции
 - Более эффективное использование доступного спектра
 - Широкие возможности применения пространственной обработки сигналов (МІМО, SDMA, AAS) и, как следствие, повышение спектральной эффективности системы в целом
 - Возможность эффективного управления мощностью и адаптивный выбор модуляции/кода

9.1 OFDM и основные параметры

- В частотной области, OFDM символ состоит из набора ортогональных поднесущих, число которых определяет количество точек быстрого преобразования Фурье (FFT). В структуре OFDM сигнала выделяют три вида поднесущих:
 - Информационные поднесущие (data subcarriers) служат для передачи информации
 - Пилотные поднесущие (pilot subcarriers) сигналы, используемые в служебных целях физического уровня: оценки канала, оценки смещения частоты, синхронизации и т.д.
 - Нулевые поднесущие (ничего не передается): DC поднесущая + защитный диапазон поднесущих на краях спектра
- Во временной области OFDM символ имеет циклическое продолжение-префикс (cyclic prefix), вставляемое для исключения влияния межсимвольной интерференции канала связи

Временная область:

9.2 Основные параметры WirelessMAN-OFDM

• Определения параметров OFDM сигнала:

- Число точек FFT (N_{FFT})
- Интервал дискретизации $\Delta t = T_b/N_{FFT}$
- Полоса канала передачи ∆F
- Частота дискретизации (определение из стандарта):

$$F_S = floor (n * BW / 8000) * 8000$$

- n фактор дискретизации
- Расстояние между поднесущими $\Delta f = F_S/N_{FFT}$
- Длительность OFDM символа $T_b = 1/\Delta f$
- Длительность защитного интервала T_q
- Полная длительность T_s= T_b+T_g
- Передаваемый сигнал s(t):

$$s(t) = \operatorname{Re} \left\{ e^{j2\pi f_c t} \sum_{\substack{k=-N_{used}/2\\k\neq 0}}^{k=N_{used}/2} c_k e^{j2\pi k\Delta f(t-T_g)} \right\}$$

Параметры WirelessMAN-OFDM символа							
	Величина n (по умолчанию = 8/7) зависит от ΔF, если полоса канала кратна значениям в МГц						
1.25	1.5	1.75	2	2.75			
n = 144/125							
N _{FFT} -	число т	очек (F	FT)	256			
	N _{used} – число поднесущих (данные + пилоты)						
Длительность защитного интервала 1/4,1/8, 1/16, 1/32							
Число защитных поднесущих (слева/справа) 28/27							
Индексы пилотных поднесущих – 88, – 63, – 38, –13, 13, 38, 63, 88							
Число частотных подканалов (набор из 12 поднесущих данных)			16				

9.3 Основные возможности WirelessMAN-OFDM

- Многообразие полос передачи от 1.25 до 28 МГц. => большой выбор желаемой пропускной способности
- Различная длительность фрейма: 2.5, 4, 5, 8, 10, 12.5, 20 мс.
- Поддержка TDD / FDD / H-FDD
- Гибкое отношение длительности фреймов восходящего (UL) и нисходящего (DL) каналов в режиме TDD
- Механизмы управления мощностью передачи
- Адаптивная модуляция и кодирование
- Возможность частичной загрузки частотного диапазона позволяет выиграть за счет передачи данных в подканале с повышенной мощностью
- Возможность использования пространственно временного кодирования (Space-Time Coding)
 - схема разнесения на передаче (код Аламоути)
- Поддержка адаптивных антенных систем

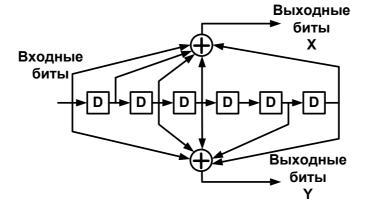
9.4 Схемы кодирования WirelessMAN-OFDM

- Обязательным является двойное кодирование (Код Рида-Соломона (RS) + Сверточный код (СС) с выкалыванием)
 - Параметры кода Рида-Соломона GF(28):

$$N = 255$$
, $K = 239$, $T = 8$

N – число байт закодированной последовательности

К – число байт на входе кодера


Т – число байт которые может исправить код

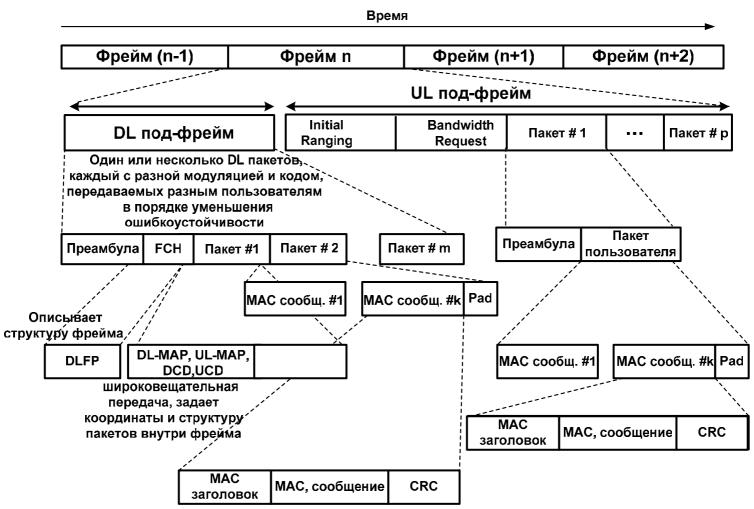
Генерирующий полином: $g(x) = (x+\lambda^0) (x+\lambda^1) (x+\lambda^2) (x+\lambda^{2T-1}), \lambda=02_{HEX}$

Полином поля: $p(x) = x^8 + x^4 + x^3 + x^2 + 1$

- Сверточный кодер с длиной кодового ограничения равной 7

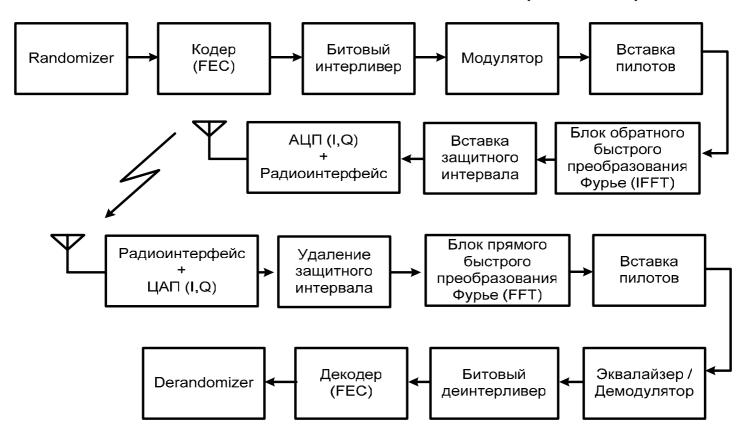
Таблица выкалывания				
Code rate XY				
1/2	X ₁ Y ₁			
2/3	$X_1Y_1Y_2$			
³ / ₄				
5/6 X ₁ Y ₁ Y ₂ X ₃ Y ₄ X ₅				

9.4 Схемы кодирования WirelessMAN-OFDM


Обязательные схемы кодирования:

Модуляции	Размер некодированного блока, (байт)	Размер кодированного блока, (байт)	Full code rate	RS (N,K,T)	CC (code rate)
BPSK	12	24	1/2	(12,12,0)	1/2
QPSK	24	48	1/2	(32,24,4)	2/3
QPSK	36	48	3/4	(40,36,2)	5/6
16-QAM	48	96	1/2	(64,48,8)	2/3
16-QAM	72	96	3/4	(80,72,4)	5/6
64-QAM	96	144	2/3	(108,96,6)	3/4
64-QAM	108	144	3/4	(120,108,6)	5/6

- Дополнительно физический уровень стандарта OFDM включает (необязательную к реализации) поддержку 2-х кодов
 - Блочный турбо код
 - Сверточный турбо код


9.5 Структура TDD фрейма WirelessMAN-OFDM

9.6 Структурная схема OFDM-приемника

Типичная схема потока данных в OFDM приемопередатчике:

9.7 Пропускная способность WirelessMAN-OFDM

• Максимальная скорость передачи данных (получена в предположении минимальной длительности защитного интервала $T_{\alpha} = 1/32*T_{b}$ и n = 8/7)

Полоса канала передачи ΔF	QPSK1/2	QPSK3/4	16-QAM 1/2	16-QAM 3/4	64-QAM 2/3	64-QAM3/4
1.25	1.04	1.56	2.08	3.12	4.16	4.68
1.75	1.46	2.18	2.91	4.36	5.82	6.56
3.5	2.91	4.36	5.82	8.73	11.64	13.09
5	4.16	6.23	8.31	12.47	16.62	18.70
7	5.82	8.73	11.64	17.46	23.27	26.18
10	8.31	12.47	16.62	24.94	33.25	37.40
20	16.62	24.94	33.25	49.87	66.49	74.81

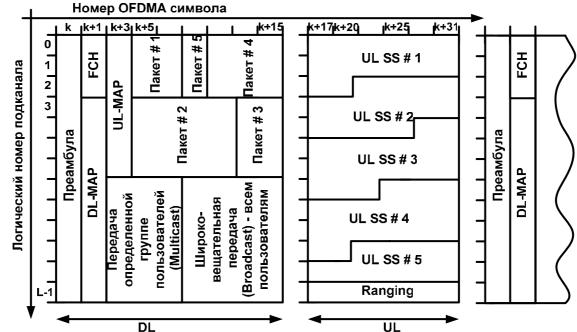
10. Ортогональное Частотное Разделение Пользователей - WirelessMAN-OFDMA

Спецификация физического уровня WirelessMAN-OFDMA основана на OFDM модуляции и предназначена для работы в условиях отсутствия прямой видимости в диапазоне частот < 11 ГГц. Является своего рода усовершенствованным продолжением WirelessMAN-OFDM, предоставляя новые возможности и перспективы

- Широкие возможности оптимального распределения спектра между разными пользователями
- Весь доступный спектр разделен на подканалы, состоящие из набора поднесущих
- Различные подканалы могут одновременно использоваться несколькими пользователями (т.е. один OFDMA символ одновременно переносит информацию от нескольких пользователей на ортогональных подканалах)
- Поднесущие подканалов разбросаны по всему спектру, что обеспечивает выигрыш за счет разнесения (снижение вероятности замирания канала на всех поднесущих)
- Возможность частичного использования доступного спектра дает дополнительный выигрыш за счет распределения бюджета мощности на используемых подканалах (subchannelization gain)

10.1 Основные возможности WirelessMAN-OFDMA

- Увеличен размер FFT с 256 до 2048 точек
- Многообразие полос передачи задает большой выбор желаемой пропускной способности
- Длительность фрейма: 2, 2.5, 4, 5, 8, 10, 12.5, 20 мс.
- Поддержка нескольких зон внутри фрейма
- Размещение слотов по символам и подканалам
- Передача с повышенной мощностью (boosting) & повторение передаваемых сигналов на различных подканалах (repetition)
- TDD / FDD / H-FDD
- Механизмы управления мощностью передачи
- Адаптивная модуляция и кодирование
- MIMO(Multiple Input Multiple Output) режимы передачи
- ARQ, H-ARQ автоматический запрос на повторную передачу
- Subchannelization gain в восходящем канале
- Возможность использования пространственно временного кодирования (Space-Time Coding or Frequency Hopping Diversity Coding)
 - схема разнесения на передаче Аламоути
- Поддержка адаптивных антенных систем(AAS зона)



10.2 Структура TDD фрейма WirelessMAN-OFDMA

- Нисходящий (DL) подфрейм начинается с одного символа преамбулы

 тренировочной последовательности, используемой для целей синхронизации
- Управляющий заголовок поле FCH (Frame Control Header) описывает структуру TDD фрейма

• Поля DL-MAP и UL-MAP — определяют карту DL и UL подфреймов соответственно (расположение/координаты данных пользователей во фрейме) — Номер ОFDMA символа

10.3 WirelessMAN-OFDMA DL Преамбула

- Преамбула используется только в нисходящем канале и расположена в начале каждого фрейма (в UL преамбула отсутствует)
- DL преамбула передается с повышенной мощностью (boosting) и с модулируется BPSK

```
Re { PreamblePilotsModulated } = 4*sqrt(2)*(1/2-w_k),
```

w_k – псевдошумовая последовательность {+1;-1} (задана стандартом)

• Стандарт определяет 3 набора преамбул:

PreambleCarrierSet_n = n + 3 * k PreambleCarrierSet_n – набор поднесущих № n n – номер набора 0,1,2; k – бегущий индекс 0, 1, ..., 567

• Каждый сегмент использует преамбулу из набора (172 защитных поднесущих справа и слева спектра не модулируются, DC – поднесущая также выкалывается)

10.4 Перестановки WirelessMAN-OFDMA

- Стандарт определяет разбиения на подканалы и правила перехода из логической области в физическую, указывающие на физическое расположение поднесущих подканалов внутри спектра. Данный механизм перестановок поднесущих разработан с целью:
 - уменьшения вероятности перекрытий поднесущих между соседними секторами/сотами в случае частичного использования спектра
 - улучшения характеристик системы в частотно- селективном канале связи, за счет разбрасывания поднесущих подканалов по спектру
- Перестановки нисходящего канала (DL):
 - PUSC (Partially Used Subchannelization)
 - FUSC (Fully Used Subchannelization)
 - OFUSC (Optional FUSC)
- Перестановки восходящего канала (UL):
 - PUSC (Partially Used Subchannelization)
 - OPUSC (Optional PUSC) увеличено число подканалов за счет сокращения числа защитных поднесущих + уменьшено число пилотных поднесущих
- AMC (Advanced Modulation&Coding) одинакова для DL и UL состоит из соседних поднесущих

10.5 Структура OFDMA подканала в DL PUSC

- Распределение поднесущих по подканалам осуществляется в несколько шагов:
 - Все имеющиеся поднесущие делятся на 120 кластеров (по 14 соседних поднесущих в каждом).
 - Перенумерация кластеров из физических в логические выполняется по формуле:

LogicalCluster = RenumberingSequence((PhysicalCluster+13*IDcell) mod 120)

Распределение кластеров по 6 главным группам

Группа №	0	1	2	3	4	5
Кластеры	0–23	24–39	40–63	64–79	80–103	104–119

Структура кластера

Число точек (FFT) N _{FFT}	2048
Число используемых поднесущих +DC	1681
Число защитных поднесущих	184, 183
Число поднесущих данных	1440
Число кластеров	120
Число подканалов	60

10.6 Структура OFDMA подканала в UL PUSC

- В UL PUSC подканал состоит из 6 черепиц. Распределение поднесущих по подканалам осуществляется в соответствии со следующей процедурой:
 - Все поднесущие делятся на 420 черепиц (по 4 соседних поднесущих на 3 символа). Черепицы разделяются на 6 групп по 70 соседних черепиц в каждой
 - Шесть черепиц подканала выбираются по формуле (разброс по спектру):

 $Tile(s,n) = 70*n+(Pt[(s+n)mod70]+ID_cell)mod70$

п – индекс черепицы 0...5

Pt – заданная перестановочная последовательность

s – номер подканала

ID_cell – целое число в пределах 0...69

 После вставки пилотов внутри черепиц, индексирование поднесущих данных внутри подканала начинается с первого символа и нижней поднесущей нижней черепицы и продолжается в возрастающем порядке вдоль поднесущих одного символа, затем переходя на следующий символ и т.д. Поднесущие данных должны быть проиндексированы с 0 до 47.

Число точек (FFT) N _{FFT}	2048
Число используемых поднесущих +DC	1681
Число защитных поднесущих	184, 183
Число черепиц (tiles)	420
Число черепиц на подканал	6
Число поднесущих на подканал	48
Число подканалов	70

10.7 Структура OFDMA подканала для AMC

- АМС перестановка одинакова в DL и UL. Для формирования подканала используются соседние поднесущие. Следовательно все поднесущие имеют близкий коэффициент передачи.
- Использование АМС подканалов значительно упрощает механизм выбора модуляции и кода на подканал (адаптивная модуляция и кодирование).
 АМС подканалы позволяют эффективно применять алгоритмы распределения мощности ("water-pouring" и т.д.), и могут использоваться совместно с адаптивными антенными решетками.
- Подканал АМС собирается из 6 фрагментов (bins), состоящих из 9 соседних поднесущих (8 данных + 1 пилот). Существует три вида АМС подканалов: {1x6}, {2x3}, {3x2}, {число фрагментов х число OFDMA символов

2x3}	Число точек (FFT) N _{FFT}	2048
	Число используемых поднесущих +DC	1729
	Число защитных поднесущих	160, 159
	Число фрагментов (bins)	192
	Число OFDMA символов на подканал	2;3;6
000	Число подканалов зависит	192, 96, 64
	Число поднесущих на подканал	48

10.8 Кодирование WirelessMAN-OFDMA

- Код Рида-Соломона исключен из спецификации физического уровня
- В качестве обязательного используется сверточный код (Convolutional Coding) с выкалыванием
- Структура кодера идентична сверточному коду WirelessMAN-OFDM, за исключением того, что теперь начальное состояние кодера инициализируется с помощью последних 6 бит передаваемой (некодированной) последовательности (tail-biting encoder)
- Дополнительно введено правило объединения подканалов (до шести подканалов могут быть объединены в 1 блок), с целью обеспечить большие кодированные блоки. Объединение подканалов позволяет существенно уменьшить битовую ошибку, особенно для низких модуляций
- Закодированные данные могут повторяться (2, 4 или 6 раз) на различных физических подканалах (repetition coding)
- Также как и физический уровень WirelessMAN-OFDM включает необязательную поддержку 2-х кодов
 - Блочный турбо код
 - Сверточный турбо код

11. WirelessMAN-OFDMA IEEE-802.16e

Спецификация WirelessMAN-OFDMA IEEE 802.16е предназначена для обслуживания **мобильных** терминалов в условиях отсутствия прямой видимости и диапазоне частот < 11 ГГц. Физический уровень основан на по крайней мере одном из размеров FFT 2048 (обратно совместимым с IEEE Std 802.16-2004) 1024, 512 и 128 и базируется на концепции масштабирования согласно которой:

- Расстояние между поднесущими не зависит от полосы используемой для передачи (следовательно длительность символа фиксирована для полосы 10 или 20 МГц)
- Число используемых поднесущих (и соответственно число точек FFT) масштабируется совместно с используемым диапазоном
- Число поднесущих подканала также не зависит от полосы передачи
- Число подканалов масштабируется с размером FFT

11.1 Параметры масштабирования в WirelessMAN-OFDMA IEEE802.16e

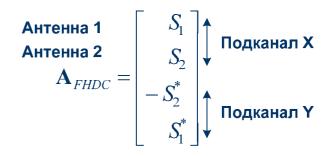
Параметры символа:

Число точек FFT (N _{FFT})	128	512	1024	2048			
Число используемых поднесущих +DC	85/97/109	421/409/433	841/841/865	1681/1681/1729			
Число кластеров/черепиц/лотков (DL PUSC / UL PUSC / AMC)	6/24/12	30/102/48	60/210/96	120/552/192			
Число защитных поднесущих	43/31/19	91/103/79	183/183/159	367/367/319			
Число подканалов (DL PUSC / UL PUSC / AMC)	3/4/6	15/17/24	30/35/48	60/92/ 96			
Полоса частот ΔF (МГц)	1.25	5	10	20			
Частота дискретизации F _S (МГц)	1.429	5.714	11.429	22.857			
Интервал дискретизации ∆ t, нс	700	175	88	44			
Расстояние между поднесущими Δf, кГц			11.16				
Длительность OFDM символа Т _ь , мкс	89.6						
Длительность защитного интервала T_{g} , мкс	11.2 Т _g =1/8 (Т _g = ½, 1/16, 1/32 также поддерживаются)						
Полная длительность T _s = T _b +T _g , мкс			100.8				

Параметры фрейма:

Длительность фрейма, мс	2	2.5	4	5	8	10	12.5	20
Число OFDMA символов	19	24	39	49	79	99	124	198


11.2 Основные технические отличия стандарта 802.16e (OFDMA)


- Ориентированность на поддержку мобильных пользователей, с этой целью определена процедура передачи пользователя между базовыми станциями (handover)
- В DL добавлены перестановки TUSC-1 и TUSC-2 (Tile Usage of Subchannels) являющиеся зеркальным отражением UL PUSC и UL OPUSC
- Введена концепция масштабирования
- Определен механизм прозвона канала (по инструкции базовой станции пользователь посылает тренировочную последовательность). Позволяет провести оптимизацию при выделении полосы пользователям (выдать участок с наиболее сильным коэффициентом передачи)
- Добавлены дополнительные MIMO режимы и промежуточная тренировочная последовательность для MIMO-режимов (midamble)
- В схемах кодирования добавлен LDPC код
- Определен механизм управления мощностью на станции пользователя

11.3 МІМО - режимы

- Разнесение на передачу (2 передающих антенны) основано на коде Аламоути
 - Space -Time Coding передача с двух антенн в одном частотном подканале
 - Frequency Hopping Diversity Coding передача с двух антенн, в двух частотных подканалах (передача занимает в двое меньше времени)

Пример UL PUSC:

11.4 МІМО - режимы

Матрицы разнесения на передачу (STC) - 4 передающих антенны

$$\mathbf{A} = \begin{bmatrix} S_1 & -S_2^* & 0 & 0 \\ S_2 & S_1^* & 0 & 0 \\ 0 & 0 & S_3 & -S_4^* \\ 0 & 0 & S_4 & S_3^* \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} S_1 & -S_2^* & 0 & 0 \\ S_2 & S_1^* & 0 & 0 \\ 0 & 0 & S_3 & -S_4^* \\ 0 & 0 & S_4 & S_3^* \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} S_1 & -S_2^* & S_5 & -S_7^* \\ S_2 & S_1^* & S_6 & -S_8^* \\ S_3 & -S_4^* & S_7 & S_5^* \\ S_4 & S_3^* & S_8 & S_6^* \end{bmatrix}$$

$$\mathbf{C} = \begin{bmatrix} S_1 \\ S_2 \\ S_3 \\ S_4 \end{bmatrix}$$

МІМО с обратной связью – формирование диаграммо-образующих схем (ДОС) на передающей стороне (передача по пространственным подканалам)

$$\mathbf{X}_{Nt\times 1} = \mathbf{W}_{Nt\times Ns}\mathbf{S}_{Ns\times 1}$$

X – вектор переданного сигнала

S – вектор данных

W – матрица ДОС

Nt – число передающих антенн

Ns – число потоков данных

- **МІМО пространственное мультиплексирование –** одновременная передача нескольких потоков данных с разных антенн
- **SDMA** пространственное разделение пользователей одновременно передающих на одинаковых частотных подканалах

11.5 ARQ/HARQ механизмы

- ARQ (automatic repeat request) приемник проверяет правильность приема пакета/блока данных и посылает передатчику подтверждение о приеме (ACK/NACK нет/есть ошибки). Все пакеты принятые с ошибкой повторно ретранслируются. Код контрольной суммы (CRC) используется на приеме для детектирования ошибок.
- **H-ARQ (Hybrid ARQ)** механизм объединяющий ARQ и схему кодирования. Декодер на приемнике использует каждую ретрансляцию с целью более достоверного декодирования. Стандарт определяет 2 типа H-ARQ
 - Chase Combining если приемник обнаружил ошибку, пакет передается повторно и декодируется с учетом, последовательности принятой с ошибками
 - Incremental Redundancy ошибочный блок данных передается повторно, но с новыми параметрами, например другой таблицей выкалывания

Таблица		Code Rate						
выкалыва	ния	1/2	2/3	3/4	5/6			
2-я передача	Х	1	01	011	01011			
	Υ	1	11	101	10101			
3-я передача	Х	1	10	110	10110			
	Υ	1	11	011	01011			
4-я передача	Х	1	01	101	01101			
	Υ	1	11	110	10110			